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Abstract
Analytical matrix elements of the position operator xn (n > 0) and of the first-
and second-order differential operators are derived using the eigenfunctions of
two hyperbolic Pöschl–Teller potentials. These general relations are written
in closed form and calculated from the properties of the integral powers of
hypergeometric series. Additionally, an explicit expression is derived for the
successive derivatives of the Beta function. Convergence and reliability of
these results will be discussed and an application to the calculation of the
rovibrational energy spectrum of CO will be considered.

PACS numbers: 02.30.Gp, 03.65.Ge, 31.15.xt

1. Introduction

Considerable interest has been devoted to the Morse and Kratzer potentials as exactly solvable
models describing anharmonic molecular vibrations associated with stretching modes [1, 2].
Due to their relative simplicity, the corresponding matrix elements have been widely considered
and derived either numerically, analytically or algebraically in different ways for many years
[3–8]. Concerning the bending motions and/or out-of-plane modes, another exactly solvable
model, namely the hyperbolic modified Pöschl–Teller (MPT) potential, may be considered
and seen as a better alternative than the usual harmonic oscillator. For this potential, matrix
elements of the natural variable u = tanh(αx) and of the differential operators d/dx and
d2/dx2 have also been derived [9–11] with the same techniques as those used for the Morse
and Kratzer oscillators. There exist other formulations for Pöschl–Teller-type potentials which
are exactly solvable for both the bound and scattering states. In this work, we are interested
in the bound states of the second Pöschl–Teller (SPT) potential, which contains the MPT as
a special case. As for the MPT potential, its solutions have been studied in the Lie-algebraic
framework involving non-compact Lie dynamical symmetries [12–14] and we anticipate that
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the eigenfunctions are expressed by means of the 2F1 Gauss hypergeometric functions. Despite
its importance for scattering [15] and exact path integral treatments [16], the SPT potential
has not attracted much attention, compared to the Morse potential, in molecular physics
with bound-state problems. However, we should just mention that for diatomic molecules
it has been successfully employed in some earlier works in detailed comparative studies
of empirical potential energy functions [17–19] and also used to calculate Franck–Condon
factors, photodissociation cross sections and some matrix elements of vibrational transitions
[20–24]. In addition, its energy eigenvalues were determined semiclassically in [25]. It is
also worth noting that interest in this potential is twofold. First, depending on the values of
the parameters, we can select either the discrete or the continuous energy spectrum emerging
from the Casimir operators of different representations [12, 13]. Second, unlike the Morse
potential, the SPT potential possesses a realistic internuclear behaviour as x → 0.

To perform well-adapted and efficient variational calculations, we first need to compute
the matrix elements of various quantities. In this work, we have determined, for both MPT
and SPT potentials, closed analytical expressions of the matrix elements for arbitrary positive
powers of the operator xn as well as for the differential operators d/dx and d2/dx2. All the
calculations were based on the properties of the hypergeometric series and of their integral
powers [26]. Additionally, these properties allowed us to derive an explicit expression for
the successive derivatives of the Beta function. Several applications may involve xn-type
operators such as, for instance, the rovibrational Hamiltonian for semirigid molecules written
in normal coordinates [27]. To keep our general expressions compact, intermediate quantities
based on infinite series were introduced. But as for practical applications, the arguments
involved in the summations are large enough, it will be shown that the series converge quite
rapidly at the desired accuracy on 64 bits processors and without rounding off errors. This
is not the case in general when performing numerical integrations whose accuracy is rapidly
spoiled as n and the vibrational quantum numbers v increase.

As an illustration, the general matrix elements derived from the SPT eigenfunctions have
been used to calculate variationally the rovibrational energy spectrum of the CO molecule in
its ground electronic state. More generally, applications to bending and stretching vibrations
in polyatomic molecules could also be considered using the MPT and SPT potentials,
respectively. This will be considered in a forthcoming study.

2. The modified Pöschl–Teller potential

2.1. Eigensolutions and symmetry

The one-dimensional Schrödinger equation (SE) for the modified Pöschl–Teller potential is
written as [28–30][

− h̄2

2μ

d2

dx2
− D

cosh2(αx)

]
�j

v (x) = Ev�
j
v (x), x ∈ (−∞, +∞), (1)

where D is the depth of the well in energy units, μ the reduced mass and α a scaling parameter
related to the potential range. The x variable corresponds to the relative physical displacement
from the equilibrium position. This potential can be appropriate for the description of bending
molecular vibrations. As usual [10], the natural variable u = tanh(αx) is introduced for
convenience.

The eigensolutions of the SE for this potential are now well established and are given
by [11]

�j
v (u) = Nj

v (1 − u2)
j−v

2 Cj+1/2−v
v (u), (2)
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where Cβ
v (u) are the Gegenbauer orthogonal polynomials, N

j
v stands for the normalization

constant and j is connected to the potential depth as

Nj
v =

√
αv!�(j − v + 1/2)

π1/2�(j − v)(2j − 2v + 1)v
, j (j + 1) = 2μD

α2h̄2 , (3)

where (a)n = a(a+1) · · · (a+n−1) is the Pochhammer symbol. Note that due to the connection
between the one-dimensional MPT eigenfunctions (2) and the states

∣∣[N0], j = N
2 ,m = v−j

〉
associated with U(2) ⊃ SU(2) ⊃ SO(2), j also labels the irreducible representations of the
corresponding Lie algebra su(2) [11, 31]. Thus it can be shown that the expected maximum
number of quanta is vmax = [j ] where [j ] means the integer part of j . However it must
be noted that from the 2j + 1 bound states of the MPT, only [j ] + 1 are normalizable,
meaning that the eigenfunctions (2) are associated with only one branch (m < 0) of the su(2)

representations. Since this potential possesses both bound and unbound states and as recently
claimed by Aldaya et al [32, 33], the correct dynamical symmetry for the MPT is not SU(2)

in this case but the non-compact dynamical group SO(2, 1)(≈SL(2,�) ≈ SU(1, 1)) [12].
The associated algebra contains compact and non-compact generators allowing us to describe
discrete and continuous spectra, respectively.

Throughout the paper we shall prefer to work with a more convenient coordinate system.
So introducing the dimensionless coordinate x̄ = x/xe, the associated SE (1) is written[

− d2

dx̄2
− ᾱ2j (j + 1)

cosh2(ᾱx̄)

]
�j

v (x̄) = ĒMPT
v �j

v (x̄), (4)

where we have defined

ᾱ = αxe, ĒMPT
v = 2μx2

e

h̄2 Ev,

and we set now u = tanh(ᾱx̄). The energy eigenvalues are given by [11]

ĒMPT
v = −ᾱ2(j − v)2, v = 0, 1, . . . , [j ]. (5)

In this case, the variable x̄ may correspond to a dimensionless normal coordinate of
vibration (≡q) associated for instance with a bending mode.

2.2. Matrix elements 〈x̄n〉v′v and 〈d/dx̄〉v′v between the MPT wavefunctions

Let us first start with the evaluation of the integral

(p)Ov′v =
∫ +∞

−∞
�

j

v′(x̄) [cosh(ᾱx̄) + sinh(ᾱx̄)]p �j
v (x̄) dx̄,

= 1

ᾱ

∫ +1

−1
�

j

v′(u)(1 + u)p(1 − u2)−p/2−1�j
v (u) du.

(6)

Expressing the Gegenbauer polynomials as 2F1 hypergeometric series [34, 35]

C(β)
v (u) = (2β)v

v!
2F1

(−v, 2β + v

β + 1
2

; 1 − u

2

)
, (7)

with (if w integer)

pFq

(
a1, . . . , ap

b1, . . . , bq

; y

)
=

l∑
k=0

(a1)k · · · (ap)k

(b1)k · · · (bq)k

yk

k!

{
l = w if ai = −w,

l = ∞ otherwise,
(8)

3
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the integral (6), with appropriate integration variables, is written

(p)Ov′v = N
j
v N

j

v′

ᾱ

(βv)v(βv′)v′

v!v′!

v∑
k=0

v′∑
k′=0

(2)2j−(v+v′)−1

× (−v)k(−v′)k′(2j − v + 1)k(2j − v′ + 1)k′

(j − v + 1)k(j − v′ + 1)k′k!k′!

×
∫ 1

0
uj− v+v′

2 + p

2 −1(1 − u)j− v+v′
2 − p

2 −1+k+k′
du, (9)

with βv = 2j − 2v + 1 and (0)Ov′v = δv′v .
The last line in equation (9) can be evaluated analytically using the generalized integral

representation [36] (if Re(c) > Re(b) > 0)

∫ 1

0
tb−1(1 − t)c−b−1(1 − ytq)−a dt = �(b)�(c − b)

�(c)
q+1Fq

⎛
⎜⎜⎝

a,
b

q
,
b + 1

q
· · · b + q − 1

q

c

q
,
c + 1

q
· · · c + q − 1

q

; y

⎞
⎟⎟⎠ ,

(10)

where we have chosen b = j − v+v′
2 + p

2 , y = 1, q = 1, a = 0 and c = 2j − (v + v′) + k + k′.
So, setting

q ≡ q(v, v′) = j − v + v′

2
, q ′ ≡ q ′(v, v′, k′, k) = q + k + k′, (11)

we finally arrive for the matrix elements (6) at the result

(p)Ov′v = N
j
v N

j

v′

ᾱ

(βv)v(βv′)v′

v!v′!

v∑
k=0

v′∑
k′=0

(2)2j−(v+v′)−1

× (−v)k(−v′)k′(2j − v + 1)k(2j − v′ + 1)k′

(j − v + 1)k(j − v′ + 1)k′k!k′!
B

(
q +

p

2
, q ′ − p

2

)
, (12)

with, in the case where j is integer

v + v′ < 2j − p + 2(k + k′), (13)

and where B(x, y) = �(x)�(y)/�(x + y) is the Beta function. Let us mention that it would
have been certainly more advantageous to note that the last line in (9) is simply the integral
representation of the Beta function. However, it seemed to us necessary to define the more
general integral representation (10) since it will be considered for further calculations.

From equations (6) and (12), we can easily derive the matrix elements 〈x̄〉v′v of x̄ as

MPTX̃
j (1)

v′v =
∫ +∞

−∞
�

j

v′(x̄)x̄�j
v (x̄) dx̄ = 1

ᾱ

d(p)Ov′v

dp

∣∣∣∣
p=0

, (14)

leading to

MPTX̃
j (1)

v′v = N
j
v N

j

v′

2ᾱ2

(βv)v(βv′)v′

v!v′!

v∑
k=0

v′∑
k′=0

(2)2j−(v+v′)−1

× (−v)k(−v′)k′(2j − v + 1)k(2j − v′ + 1)k′

(j − v + 1)k(j − v′ + 1)k′k!k′!
,

× B(q, q ′)[ψ(q) − ψ(q ′)]. (15)

Note that these matrix elements are nonvanishing only for v + v′ odd and that ψ’s are the
digamma functions.

4
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• Matrix elements 〈x̄n〉v′v for arbitrary powers n > 0 can be calculated from the
generalization of equation (14) by evaluating the nth derivative

MPTX̃
j (n)

v′v =
∫ +∞

−∞
�

j

v′(x̄)x̄n�j
v (x̄) dx̄ = 1

ᾱn

dn(p)Ov′v

dpn

∣∣∣∣
p=0

, (16)

which will involve polygamma functions ψ(n−1)—with ψ(0) ≡ ψ the digamma function—
defined as [34]

ψ(n−1)(z) = (−1)n(n − 1)!
∞∑

k=0

(z + k)−n. (17)

In this case, MPTX̃
j (n)

v′v are simply expressed as

MPTX̃
j (n)

v′v = N
j
v N

j

v′

ᾱn+1

(βv)v(βv′)v′

v!v′!

v∑
k=0

v′∑
k′=0

(2)2j−(v+v′)−1

× (−v)k(−v′)k′(2j − v + 1)k(2j − v′ + 1)k′

(j − v + 1)k(j − v′ + 1)k′k!k′!
B(n)

k′k (v
′, v), (18)

with

B(n)
k′k (v

′, v) = dnB
(
q + p

2 , q ′ − p

2

)
dpn

∣∣∣∣
p=0

. (19)

Using the Leibniz rule for the nth derivative of a product with respect to p, we write

B(n)
k′k (v

′, v) =
n∑

r=0

(
n

r

)
�(r)

(
q + p

2

)
�(n−r)

(
q ′ − p

2

)
�(q + q ′)

∣∣∣∣∣
p=0

, (20)

where the sth derivative of the gamma function can be written in symbolic notations as

�(s)

(
z ± p

a

)∣∣∣∣
p=0

= (±1)s

as
�(z)

∑
m0m1···ms−1

gm0m1···ms−1

× [ψ(0)(z)]m0 [ψ(1)(z)]m1 · · · [ψ(s−1)(z)]ms−1 (21)

with the additional conditions

m0 + m1 + · · · + ms−1 � s, m0 + 2m1 + · · · + sms−1 = s,

so that

B(n)
k′k (v

′, v) = B(q, q ′)
2n

n∑
r=0

(
n

r

)
(−1)n−rF[ψ(w)(q), ψ(w′)(q ′)]. (22)

HereF is a function, involving power products of ψ(w)(q) and ψ(w′)(q ′), to be determined.
But calculations of (20) or (22) for arbitrary positive powers n, which amounts to evaluate
the successive derivatives (21) of gamma, is not an easy task. This is because, to our
knowledge, no direct calculation gives the g coefficients in a trivial way. However, this
task may be carried out rather efficiently using symbolic computer programs such as
Maple. In any case, we will present an alternative procedure in section 2.3 for computing
equation (20) without knowing explicitly the successive derivatives of gamma.

Let us consider just the n = 2 and n = 3 cases to illustrate this method by computing
the g coefficients ‘by hand’. Then, MPTX̃

j (2)

v′v and MPTX̃
j (3)

v′v are easily derived from (20)
with

B(2)
k′k(v

′, v) = B(q, q ′)
4

[ψ(1)(q) + ψ(1)(q ′) + ψ(q)2 + ψ(q ′)2 − 2ψ(q)ψ(q ′)], (23)

5
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and

B(3)
k′k(v

′, v) = B(q, q ′)
8

[ψ(2)(q) − ψ(2)(q ′) + 3ψ(1)(q)ψ(q)

− 3ψ(1)(q)ψ(q ′) + 3ψ(1)(q ′)ψ(q) − 3ψ(1)(q)ψ(q ′)
+ ψ(q)3 − ψ(q ′)3 + 3ψ(q)ψ(q ′)2 − 3ψ(q)2ψ(q ′)], (24)

respectively.
• In order to calculate the matrix elements of the corresponding momentum operator

p̄ = −id/dx̄ = −iᾱ(1 − u2)d/du, we need to take into account the recurrence relations
for the Gegenbauer polynomials [34]

dCλ
v (u)

du
= 2λCλ+1

v−1(u),

uCλ
v (u) = Cλ

v−1(u) +
v + 1

2(λ − 1)
Cλ−1

v+1 (u),

(25)

so that the matrix elements

MPTP̃
j (1)

v′v =
∫ +∞

−∞
�

j

v′(x̄)p̄�j
v (x̄) dx̄, (26)

are expressed as

MPTP̃
j (1)

v′v = iᾱ

{
(j − v)

[(
N

j
v

N
j

v+1

)
(v + 1)

2j − 2v − 1
(−1)Ij,j

v′,v+1 +

(
N

j
v

N
j−1
v−1

)
(0)Ij,j−1

v′,v−1

]

−
(

N
j
v

N
j

v−1

)
(2j − 2v + 1)(−1)Ij,j

v′,v−1

}
. (27)

In this last expression, we have introduced the following integral representation:

(p)Ij ′,j
v′,v = N

j
v N

j ′
v′

ᾱ

∫ 1

−1
(1 − u2)

j+j ′
2 − v+v′

2 −p/2−1C
(j ′−v′+ 1

2 )

v′ (u)C
(j−v+ 1

2 )
v (u) (28)

which is written in a closed form as

(p)Ij ′,j
v′,v = N

j
v N

j ′
v′ (βv)v(βv′)v′

ᾱv!v′!

v∑
k=0

v′∑
k′=0

(2)j+j ′−(v+v′)−p−1

× B

(
j + j ′

2
− v + v′

2
− p

2
,
j + j ′

2
− v + v′

2
− p

2
+ k + k′

)

× (−v)k(−v′)k′(2j − v + 1)k(2j ′ − v′ + 1)k′

(j − v + 1)k(j ′ − v′ + 1)k′k!k′!
, (29)

where 
v = v − v′ is odd. Note that (p)Ij ′,j
v′,v is a particular case of the more general

integrals (p,p′)J j ′,j
v′,v defined in equation (A.3).

At this stage, we can simply note that the integrals (p)Ij,j

v′,v correspond to the matrix

elements
〈
�

j

v′
∣∣coshp(ᾱx̄)

∣∣�j
v

〉
while the overlap integrals (0)Ij,j−1

v′,v−1 are proportional to the

Franck–Condon factors
〈
�

j

v′
∣∣�j−1

v−1

〉
between two potentials whose depths are characterized

by j and j − 1, respectively.

Thus, the calculation of the matrix elements of the MPT potential is reduced to

〈
�

j

v′
∣∣ − ᾱ2j (j + 1)

cosh2(ᾱx̄)

∣∣�j
v

〉 = −ᾱ2j (j + 1)(−2)Ij,j

v′,v. (30)

6
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For practical applications, we only need to evaluate matrix elements of p̄2 which can be
deduced from the eigenvalue equation (4) and from (30). In that case, we simply have

MPTP̃
j (2)

v′,v ≡ 〈
�

j

v′
∣∣p̄2

∣∣�j
v

〉 = −ᾱ2{(j − v)2δv′v − j (j + 1)(−2)Ij,j

v′,v
}
. (31)

Using results (15) and (27) and from the basic definition of the bosonic operators a+ and
a, we can easily deduce the actions of the latters on the modified Pöschl–Teller eigenfunctions
(2) 〈

�
j

v+l

∣∣a∣∣�j
v

〉 = 1√
2

(
MPTX̃

j (1)

v+l,v + i MPTP̃
j (1)

v+l,v

)
〈
�

j

v+l

∣∣a+
∣∣�j

v

〉 = 1√
2

(
MPTX̃

j (1)

v+l,v − i MPTP̃
j (1)

v+l,v

)
, l = ±1,±3, . . . .

(32)

These last expressions generalize those found in many textbooks of quantum mechanics for
the harmonic oscillator.

2.3. Alternative calculation of matrix elements 〈x̄n〉v′v

An alternative procedure can be used for deriving the matrix elements MPTX̃
j (n)

v′v of the operator
x̄n. It consists in the calculation of the desired expressions directly from equation (9) instead
of (12) and in the derivation of the former with respect to p. Before considering the general
case, let us focus on the n = 1 case as a first illustration.

Using the (q, q ′) variables defined in (11), we must calculate integrals with argument of
the type uq−1(1 − u)q

′−1 ln u/(1 − u). To get rid of this problem, the logarithm function can
be identified as two 2F1 hypergeometric functions

ln

(
u

1 − u

)
= u 2F1

(
1, 1
2

; u

)
− (1 − u)2F1

(
1, 1
2

; 1 − u

)
, (33)

and using the very useful integral representation [35]

p+1Fq+1

(
ν, a1, . . . , ap

μ + ν, b1 · · · , bq

; y

)
= �(μ + ν)

�(μ)�(ν)

∫ 1

0
(1 − t)μ−1tν−1

pFq

(
a1, . . . , ap

b1 · · · , bq

; yt

)
dt,

(34)

we obtain another closed form for the desired matrix elements

MPTX̃
j (1)

v′v = 22j−(v+v′)−2N
j
v N

j

v′

ᾱ2

(βv)v(βv′)v′

v!v′!

×
v∑

k=0

v′∑
k′=0

(−v)k(−v′)k′(2j − v + 1)k(2j − v′ + 1)k′

�(q + q ′ + 1)(j − v + 1)k(j − v′ + 1)k′k!k′!

×
[
�(q + 1)�(q ′)3F2

(
q + 1, 1, 1

q + q ′ + 1, 2
; 1

)

−�(q)�(q ′ + 1)3F2

(
q ′ + 1, 1, 1
q + q ′ + 1, 2

; 1

) ]
. (35)

Consider now another useful result, as a special case of 3F2(α, 1, n + 1;β, n + 2; 1) [37]

3F2

(
α, 1, 1
β, 2

; 1

)
= �(α)�(β − 1)

�(α − 1)�(β)
[ψ(α − 1) − ψ(α − β)] , (36)

which does not appear in any tables of standard textbooks and which comes from a more
general result (see equation (7.4.4.11) of [38]). So it can be shown, after substituting (36) into
(35), that the form (15) can be recovered.

7
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Concerning the general case 〈x̄n〉v′v , we must evaluate the nth derivative of the integrals
in equation (9) which is nothing but the function B(n)

k′k (v
′, v) defined in (20). So the integral

representation of expression (20) is given by

B(n)
k′k (v

′, v) =
∫ 1

0
uq−1(1 − u)q

′−1

[
1

2
ln

(
u

1 − u

)]n

du. (37)

In order to compute this integral from (33) we have considered the following expansion
for integral powers of the hypergeometric functions [26]:[

2F1

(
1, 1
2

; z

)]n

= n!
∞∑

m=0

zm

m + n
tn−1
m (1), (38)

where t’s are recursively defined coefficients [26]

tnm(a) =
m∑

k=0

1

k + na
tn−1
k (a),

with tn0 (a) = 1/(n!an), t0
m(a) = 1 and t1

k (a) = ψ(k + 1 + a) − ψ(a).
Using all the results above and after some algebra, we can straightforwardly check that

B(n)
k′k (v

′, v) = n!

2n

n∑
r=0

(−1)n−r

∞∑
m=0

∞∑
m′=0

t r−1
m (1)tn−r−1

m′ (1)

(m + r)(m′ + n − r)

×B(q + r + m, q ′ + n − r + m′), (39)

with tσ−1
m (1)/(m + σ) = 1 and m = 0 if σ = 0. So, the matrix elements MPTX̃

j (n)

v′v are easily
deduced from (18). We thus obtain a closed expression for the successive derivatives of the
beta function. In order to make comparison with (22), we write equation (39) in a more
convenient form

B(n)
k′k (v

′, v) = B(q, q ′)
2n

n∑
r=0

(
n

r

)
(−1)n−r r!(n − r)!

×
∞∑

m=0

∞∑
m′=0

t r−1
m (1)tn−r−1

m′ (1)

(m + r)(m′ + n − r)

(q)m+r (q
′)m′+n−r

(q + q ′)m+m′+n

, (40)

where the two infinite sums in (40) may correspond to the F function in (22) involving
successive products of polygamma functions. Unlike expressions (20) or (22), we can compute
the matrix elements MPTX̃

j (n)

v′v directly from (39) or (40) without using explicitly the gamma
function and its successive derivatives. Just consider the n = 2 case to illustrate the method.

As pointed out in [39], useful representations will naturally appear by transforming the
inner finite sums in the t’s to infinite ones. For example, for n = 2 we write

t1
m(1) = ψ (m + 2) − ψ(1) =

m∑
h=0

1

h + 1
,

= (m + 1)

∞∑
h=0

1

(h + 1)(h + m + 2)
.

t1
m(1) being expressed as an infinite sum, we can finally derive the following result:

B(2)
k′k(v

′, v) = T (q − 1, q ′ − 1) + T (q ′ − 1, q − 1)

− B(q + 1, q ′ + 1)

2

∞∑
m=0

(q ′ + 1)m

(q + q ′ + 2)m(m + 1)

× 3F2

(
1, 1, q + 1

2, q + q ′ + 2 + m
; 1

)
, (41)

8
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Table 1. Comparison between symbolic and numerical calculations for selected B(n)

k′k(v
′, v) values

for (v, v′) = (k, k′) = (20, 20) and j = 100 (see equation (11)).

Equation (20) mmax (39)

n = 2 10 0.914 948 526
(×10−62) 40 0.921 511 543

0.921 511 676 50 0.921 511 676
n = 20 40 0.098 700 268
(×10−71) 100 0.103 901 412

0.103 901 414 120 0.103 901 414
n = 30 50 0.144 072 068
(×10−75) 100 0.176 269 202

0.176 275 523 150 0.176 275 523

where we have defined

T (x, y) = B(x + 1, y + 3)

4

∞∑
h=0

1

(h + 1)(h + 2)
4F3

(
2, 2, y + 3, h + 2

3, h + 3, x + y + 4
; 1

)
.

We can conclude that this result, though it seems different compared to (23), is fully equivalent
once the hypergeometric functions are simplified.

Although complex analytical expressions could also be derived for n > 2, either from
(20) or (39), it seems more advantageous to calculate numerically all the matrix elements
directly from equations (39) and (18). Nowadays, the 64 bit computer programs enable us
to compute such expressions at any level of accuracy. Practically, the two infinite series
involved in (39) or (40) are truncated at certain values, say mmax1 and mmax2, respectively,
where we set mmax1 = mmax2 = mmax. An illustrative example is presented in table 1 for both
methods. In this table, we compare the B(n)

k′k (v
′, v) values obtained from (20) with symbolic

calculations using Maple with those obtained numerically from (39) at different mmax using
the Fortran compiler. Only some selected values are given in this table, for n = 2, 20 and
30 and for (v, v′) = (k, k′) = (20, 20) and j = 100 in (11). Concerning the numerical
details, the recursive t coefficients have been determined using the definition of the digamma
function for integer values [34], namely ψ(n) = ∑n−1

k=1 k−1 − γ with γ = −ψ(1) the Euler
constant. To compute the gamma functions appearing in beta, we have employed the Lanczos
approximation [40] using an 11 term expansion which provides an accuracy of 13 significant
digits for all real numbers. As illustrated in table 1, the purely numerical calculations converge
quite rapidly and are very similar to those obtained with equation (20). Note that Maple, though
very accurate, becomes quite time consuming as (n, v, v′, k, k′) increase.

Some other numerical details about the convergence and computation of the matrix
elements 〈x̄n〉v′v will be presented in section 3.2 for the second Pöschl–Teller potential.

3. The second Pöschl–Teller potential

3.1. Eigensolutions and symmetry

We now extend the previous MPT potential by adding a repulsive term at the origin and thus
consider the second Pöschl–Teller potential [15, 28]. The dimensionless SPT equation is
written as [

− d2

dx̄2
− ᾱ2

(
λ(λ + 1)

cosh2(ᾱx̄)
− κ(κ − 1)

sinh2(ᾱx̄)

)]
�(j,κ)

v (x̄) = ĒSPT
v �(j,κ)

v (x̄), (42)

9
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with x̄ ∈ [0, +∞) and λ, κ are two strength parameters. Since we are only interested in the
bound states, we may assume λ > κ > 1 throughout this section. The equilibrium position is
given by

x̄eq = 1

ᾱ
arctanh

[(
κ(κ − 1)

λ(λ + 1)

)1/4
]

. (43)

As described in section 4, this potential can be used to calculate diatomic molecular energy
spectra. More generally, although it is more common to choose potentials such as Morse or
Kratzer [1, 2], it could also be used to describe stretching molecular vibrations in polyatomic
systems. Unlike the Morse potential, the nonphysical region corresponding to x̄ < 0 is not
included which thus allows us to characterize the true internuclear behaviour. Moreover, the
SPT potential seems to be quite flexible since it possesses 3 parameters against 2 for the Morse
potential VMorse(x̄) = D[1 − exp(−βx̄)]2.

During the past, this non-symmetrical system has been solved in different manners, e.g.
using one of the oldest approach—the factorization method [41]—the algebraic approach
[13, 14] and more recently one based on supersymmetry for shape invariant potentials [42].
In particular, this system exhibits very interesting properties involving an inherent symmetry
associated with the non-compact Lie algebra so(2, 1) ≈ su(1, 1) [13]. The potential algebra
was assigned to so(2, 2) [12] locally isomorphic to su(1, 1) ⊕ su(1, 1). In that case, the
generators connect eigenstates with the same energy but with different potentials. In addition,
Quesne [14] has considered the enveloping algebra sl(4,�) as dynamical potential algebra
and showed in particular that one of its generators can connect eigenstates corresponding to
the same potential but with different v values.

As we are only interested in the negative-energy bound states, it has been shown that, in
this case, the solution of (42) can be expressed in terms of the SU(1, 1) Bargmann functions
[43]—the analytical continuation of the Wigner functions for SU(2)—corresponding to the
positive discrete series D+

k

(
k = 1

2 , 1, 1
2 , 2, . . .

)
. Following [14], the normalized eigenfunctions

are given by

�λ,κ
v (x̄) = [(2k − 1)ᾱ sinh(2ᾱx̄)]1/2vk

m′m(2ᾱx̄), (44)

where the SU(1, 1) Bargmann matrices are

vk
m′m(β) =

[(
m′ − k

m − k

)(
m′ + k − 1
m + k − 1

)]1/2

× [sinh(β/2)]m
′−m[cosh(β/2)]−m′−m

× 2F1

(
k − m, 1 − m − k

m′ − m + 1
; −sinh2(β/2)

)
, (45)

with the auxiliary quantum numbers m,m′ related to κ, λ as

κ = m′ − m + 1
2 , λ = m′ + m − 1

2 , k = m − v,

with m′ > m + 1
2 > 1.

Finally, the eigenstates are written

�λ,κ
v (x̄) = Nλ,κ

v [sinh(ᾱx̄)]κ [cosh(ᾱx̄)]−λ
2F1

(−v, κ − λ + v

κ + 1
2

; − w2

)
(46)

with w = sinh(ᾱx̄) and

Nλ,κ
v =

[
2ᾱ(λ − κ − 2v)

(
κ + v − 1

2
v

) (
λ − v − 1

2
λ − κ − v

)]1/2

.

10
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The associated eigenvalues are written as [13, 14]

ĒSPT
v = −ᾱ2(λ − κ − 2v)2, v = 0, 1, . . . , [(λ − κ)/2]. (47)

To conclude this subsection, we would like to mention that the solutions (46) of the SPT
are connected with the eigenfunctions of the Laplace–Beltrami operator on the hyperboloid
x2

1 + x2
2 − x2

3 − x2
4 = ρ2 > 0 [12].

3.2. Matrix elements 〈x̄n〉v′v and 〈d/dx̄〉v′v between the SPT wavefunctions

Following the same procedure as in the previous section, we first evaluate, through the change
of variable u = tanh(ᾱx̄), the integral

(p)Ov′v =
∫ +∞

0
�

λ,κ
v′ (x̄) [cosh(ᾱx̄) + sinh(ᾱx̄)]p �λ,κ

v (x̄) dx̄,

= 1

ᾱ

∫ 1

0
�

λ,κ
v′ (u)(1 + u)p(1 − u2)−p/2−1�λ,κ

v (u) du, (48)

which can be expressed as

(p)Ov′v = Nλ,κ
v N

λ,κ
v′

ᾱ

v∑
s=0

v′∑
s ′=0

(−1)s+s ′
(−v)s(−v′)s ′(γv)s(γv′)s ′(

κ + 1
2

)
s

(
κ + 1

2

)
s ′s!s ′!

×
∫ 1

0
(u)2κ+2(s+s ′)(1 − u)σss′ −p/2(1 + u)σss′ +p/2 du, (49)

with γv = κ − λ + v (γv, γv′ < 0) and σss ′ = λ − κ − (s + s ′) − 1.
From equation (10) and using the properties of the 2F1(z) Gauss hypergeometric functions

at z = −1, we finally arrive at the result

(p)Ov′v = Nλ,κ
v N

λ,κ
v′

ᾱ

∑
s,s ′

(−1)s+s ′
(−v)s(−v′)s ′(γv)s(γv′)s ′(

κ + 1
2

)
s

(
κ + 1

2

)
s ′s!s ′!

× �(2κ + 2(s + s ′) + 1)�(σss ′ − p/2 + 1)

42−σss′ �(2λ)

×
p∑

j=0

(
p

j

)
�(λ + j/2)

�(κ + s + s ′ + 1 + (j − p)/2)
. (50)

Unfortunately, the differentiation of this last equation with respect to p is very difficult because
of the p-dependent sum. So we can proceed exactly as in section 2.3 by evaluating the matrix
elements 〈x̄n〉v′v from equations (14) and (49). To this end, the logarithm function arising
from the derivative with respect to p is expressed as

ln

(
1 + u

1 − u

)
= 2u 2F1

( 1
2 , 1

3
2

; u2

)
, (51)

and the integral representation (34), with appropriate integration variables, is considered. That
finally leads to

SPTX̃
λ,κ(1)
v′v = Nλ,κ

v N
λ,κ
v′

2ᾱ2

v∑
s=0

v′∑
s ′=0

(−1)s+s ′
(−v)s(−v′)s ′(γv)s(γv′)s ′(

κ + 1
2

)
s

(
κ + 1

2

)
s ′s!s ′!

× B(σss ′ + 1, κ + s + s ′ + 1)3F2

( 1
2 , 1, κ + s + s ′ + 1

3
2 , λ + 1

; 1

)
, (52)
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with 
v = 0,±1,±2 · · · and with the additional condition λ − κ − s − s ′ > 0. Note that this
latter condition ensures that the 3F2 series of unit argument

�(κ + s + s ′ + 1)

�(λ + 1)
3F2

( 1
2 , 1, κ + s + s ′ + 1

3
2 , λ + 1

; 1

)
=

∞∑
k=0

1

2k + 1

(κ + s + s ′ + k)!

(λ + k)!

is convergent and then numerically stable and computable at the desired accuracy even if the
convergence will be slower and slower as κ + s + s ′ → λ. It also turns out that this series can
be evaluated in a closed form making some assumptions. Indeed further simplications occur
when assuming (λ − κ)/2 = Vm integer. Setting r = 2Vm − s − s ′ > 0, the 3F2(1) series can
be thus rearranged as [37]

3F2

(
1
2 , 1, λ − r + 1

3
2 , λ + 1

; 1

)
= �(λ + 1)�

(
λ − r + 1

2

)[
ψ(λ − r + 1) − ψ

(
1
2

)]
2�(λ − r + 1)�

(
λ + 1

2

)
+

�(λ + 1)�
(

1
2 − λ

)
2

r−2∑
l=0

(−1)l

(r − l − 1)�(r − l)�
(

3
2 − λ + l

)
which is a special case of a known result (see equation (7.4.4.11) of [38]). Note that we have
ψ

(
1
2

) = −γ − 2 ln 2.

• Concerning the calculation of 〈x̄n〉v′v , we have to evaluate now integrals of the type

M(n)
ss ′ =

∫ 1

0
u2κ+2(s+s ′)(1 − u2)σss′

[
1

2
ln

(
1 − u

1 + u

)]n

du. (53)

From the method described in section 2.3 as well as from results of [26], we can integrate
(53) to obtain a series representation

M(n)
ss ′ =

∞∑
m=0

n!

2n

tn−1
m

(
1
2

)
2m + n

B

(
σss ′ + 1, κ + s + s ′ + m +

n + 1

2

)
, (54)

which finally leads to

SPTX̃
λ,κ(n)
v′v = Nλ,κ

v N
λ,κ
v′

ᾱn+1

v∑
s=0

v′∑
s ′=0

(−1)s+s ′ (−v)s(−v′)s ′(γv)s(γv′)s ′(
κ + 1

2

)
s

(
κ + 1

2

)
s ′s!s ′!

M(n)
ss ′ . (55)

Two illustrative examples are now considered for the n = 2 and n = 3 cases. To
derive SPTX̃

λ,κ(2)
v′v and SPTX̃

λ,κ(3)
v′v , we first need to find the expressions of M(2)

ss ′ and M(3)
ss ′ ,

respectively. For the n = 2 case, one has

M(2)
ss ′ = 1

4

∞∑
m=0

t1
m

(
1
2

)
m + 1

B

(
σss ′ + 1, κ + s + s ′ + m +

3

2

)
. (56)

As already pointed out in section 2.3, to generate useful representations for successive
and increasing values of n, the inner finite sums that appear in the coefficients tnm(a) must
be transformed to infinite ones. For example, we note that for n = 2

t1
m

(
1

2

)
= ψ

(
m +

3

2

)
− ψ

(
1

2

)
=

m∑
h=0

1

h + 1
2

,

= (m + 1)

∞∑
h=0

1(
h + 1

2

)(
h + m + 3

2

) .
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Table 2. Convergence of the matrix elements SPTX̃
λ,κ(n)

v′v for n = 2, 10 and 26 as a function of
mmax (see the text) and with λ = 248, κ = 80 and ᾱ = 0.0546 (see equation (68)).

(v′, v) mmax n = 2 mmax n = 10 mmax n = 26

(×1028)

(0, 0) 10 140.590 213 746 10 6.318 025 589 10 2.349 179 558
20 140.590 424 344 20 6.320 090 941 20 2.434 267 545
50 140.590 424 350 50 6.320 091 207 50 2.434 449 668
60 140.590 424 350 60 6.320 091 207 60 2.434 449 668

(×10−12) (×1021)

(10, 30) 20 −1.602 495 681 20 −3.687 463 969 20 44.621 (832)
50 −1.958 673 128 50 −1.986 779 565 50 −0.914 595 903
80 −1.958 675 387 80 −1.986 549 486 80 −1.135 766 963

100 −1.958 675 386 100 −1.986 549 380 150 −1.135 493 531
180 −1.135 493 527

(×1016) (×1043)

(70, 70) 100 1746.538 928 659 100 3.124 734 468 100 0.250 (900)
300 1784.822 200 328 300 5.075 358 079 300 5.295 (528)
700 1784.670 124 177 700 5.206 553 874 700 8.984 (789)

1300 1784.671 728 304 1300 5.207 150 209 1300 9.103 983 688
1700 1784.671 729 074 1700 5.207 150 736 1700 9.104 412 985
1800 1784.671 729 081 1800 5.207 150 742 2000 9.104 426 556

2200 9.104 427 680
2300 9.104 427 852

Interchanging the two infinite sums in (56) and performing convenient transformations,
we obtain

M(2)
ss ′ = B

(
σss ′ + 1, κ + s + s ′ + 3

2

)
4

∞∑
h=0

1(
h + 1

2

)(
h + 3

2

)
× 3F2

(
1, h + 1

2 , 1, κ + s + s ′ + 3
2

h + 5
2 , λ + 3

2

; 1

)
. (57)

For the n = 3 case, transforming this time the two inner finite sums that appear in t2
m(1/2)

as infinite ones and after a suitable ordering, the M(3)
ss ′ series becomes

M(3)
ss ′ = B(σss ′ + 1, κ + s + s ′ + 2)

4

∞∑
h=0

1(
h + 1

2

)
×

∞∑
k=0

1(
h + k + 3

2

)(
h + k + 5

2

) 4F3

( 3
2 , 2, h + k + 5

2 , 1, κ + s + s ′ + 2
5
2 , h + k + 7

2 , λ + 2
; 1

)
. (58)

For the n � 4 cases, similar but very complex expressions could be derived in the same
way. However, all calculations of the matrix elements SPTX̃

λ,κ(n)
v′v may be carried out

numerically directly from (54) and computed with 64 bits of precision on any current
PCs without significant loss of precision. For practical applications, the infinite sum in
(54) is truncated at a certain value, say mmax. Table 2 gives information to us about the
convergence of the SPTX̃

λ,κ(n)
v′v as a function of mmax for n = 2, 10 and 26 and for different

(v′, v) sets. As highlighted in this table, all matrix elements converge reasonably well—
with accuracy ∼10−7–10−9—even for very large powers of n and for excited vibrational
states v.
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• For the calculation of the matrix elements of the momentum operator p̄ = −id/dx̄

SPTP̃
λ,κ(1)
v′v =

∫ +∞

0
�

λ,κ
v′ (x̄)p̄�λ,κ

v (x̄) dx̄, (59)

the well-known relations for the hypergeometric functions [34] are considered

d

dz
2F1

(−v, b

c
; z

)
= (−v)b

c
2F1

(−v + 1, b + 1
c + 1

; z

)
,

2F1

(−v, b

c
; z

)
= (1 − z)v2F1

(−v, c − b

c
; z

z − 1

)
.

So, using the integral representation (p,p′)Kλ′κ ′,λκ
v′,v defined in equation (A.7), we can show

that

SPTP̃
λ,κ(1)
v′v = iᾱ

{
−κ(−1,−2)Kλκ,λκ

v′,v + (λ − κ − 2v)(1,0)Kλκ,λκ
v′,v

+

(
Nλ,κ

v

N
λ,κ+1
v−1

)
2v(λ − v + 1/2)

κ + 1/2
(0,−1)Kλκ,λκ+1

v′,v−1

}
, (60)

and SPTP̃ λ,κ(1)
vv = 0.

The matrix elements of p̄2 are easily deduced from the eigenvalue equation (42) as
well as results of appendix A
SPTP̃

λ,κ(2)
v′v = −ᾱ2

{
(λ − κ − 2v)2δv′v − λ(λ + 1)(0,−2)Kλκ,λκ

v′,v + κ(κ − 1)(−2,−2)Kλκ,λκ
v′,v

}
.

(61)

The action of the bosonic operators a+ and a on the second Pöschl–Teller eigenfunctions
(46) are also easily deduced〈

�
λ,κ
v+l

∣∣a∣∣�λ,κ
v

〉 = 1√
2

(
SPTX̃

λ,κ(1)
v+l,v + i SPTP̃

λ,κ(1)
v+l,v

)
〈
�

λ,κ
v+l

∣∣a+
∣∣�λ,κ

v

〉 = 1√
2

(
SPTX̃

λ,κ(1)
v+l,v − i SPTP̃

λ,κ(1)
v+l,v

)
,

(62)

with l = 0,±1,±2, . . . .

4. Application to the rovibrational energy spectrum of 12C16O

This part intends to apply the general methods described above to the one-dimensional diatomic
system 12C16O. Its spectroscopic data span 75.10% of the X electronic ground state which
corresponds to vibrational states with v � 41 [44]. The rotational J values range from 0 to
133. So this molecule turns out to be a very good candidate for testing the validity of the SPT
model. To our knowledge, there exists no high-resolution spectroscopic studies for diatomics
involving the SPT potential that is why this present work is worth being done.

The Schrödinger equation for the calculation of ro-vibrational energy levels of a diatomic
molecule may be written as [45][

p̂2

2μ
+

h̄2

2μr2
[1 + α(r)]J 2 + U(r)

]
�(r) = E�(r), (63)

where U(r) = UBO(r) + 
U ad(r) includes the Born–Oppenheimer potential and the mass-
dependent adiabatic contribution, respectively. r is the internuclear distance between the two
atoms and μ the reduced mass. For the rotational part,J 2 = J (J +1) and α(r) are nonadiabatic

14



J. Phys. A: Math. Theor. 42 (2009) 165209 M Rey and F Michelot

rotational BOB functions describing the interactions with excited electronic states. A detailed
description of all these terms can be found in [44].

Following the procedure described in [46, 47], the overall potential U(r) is fitted by a ξ

polynomial of order 28—with ξ = (r − re)/re the Dunham variable—while the term 1/r2 is
expanded as a 40th-order Taylor ξ -polynomial so that the radial Hamiltonian H = H(p̂, r,J )

can be converted to

H(p, q, J ) =
∑
s=0,1

∑
m

∑
u=0,1

γsmup
2sqm[J (J + 1)]u. (64)

Here, q and p = −id/dq are dimensionless normal coordinates and the corresponding
conjugate momentum, respectively, and m = u = 0 if s = 1 in (64). The normal coordinates
are defined from ξ as q = re

√
μωe/h̄ξ where the oscillator frequency ωe = (1/2πcre)

√
ke/μ,

expressed in cm−1, is determined from the force constant ke = d2U(r)/dr2|r=re
. Note that we

have found ωe = 2170.538 cm−1 for 12C16O.
Since the potential V (q) = H(0, q, 0) is centred around the origin q = 0, the

corresponding wavefunctions (44) must be displaced from the quantity q0, that is

�λ,κ
v (q + q0) = D(q0)�

λ,κ
v (q) with D(q0) = eiq0p, (65)

where we have defined q0 = qeq + q ′
0. Here, the fixed value qeq simply corresponds to the

equilibrium value (43) which allows to centre the wavefunctions at q = 0 while q ′
0 is a free

variational parameter. This latter will be adjusted when minimizing the energies EvJ resulting
from the diagonalization, for each J , of the Hamiltonian matrix.

Alternatively, instead of using the transformed wavefunctions (65), we may transform the
Hamiltonian and consider the initial functions �λ,κ

v (q). As D(q0) is unitary, the transformed
Hamiltonian is simply given by

H̃ = D†HD =
∑
s,m,u

m∑
r=0

(
m

r

)
(−q0)

rγsmup
2sqr−m[J (J + 1)]u, (66)

and our aim thus consists in the construction of the corresponding Hamiltonian matrix using
the states �λ,κ

v (q).
For the present study, we used the Ritz variational approach and expanded the trial

wavefunctions in terms of the functions (44)

�trial =
Vmax∑
v=0

cv�
λ,κ
v (q; ᾱ), (67)

where we have defined, similarly to q0, the quantity ᾱ = ᾱ0 + α′
0. Here the λ, κ and ᾱ0

parameters of the SPT potential (42) are fixed at their initial values determined from the
potential shape while the quantity α′

0 is a free nonlinear variational parameter to be adjusted
such that ∂E/∂α′

0 = 0. Vmax is the size of the basis corresponding to the Hamiltonian matrix
truncation. Note that the matrix elements of H̃ were built using equations (55) and (61).

The optimization of the variational parameters (α′
0, q

′
0) has been carried out on the purely

vibrational problem; the procedure is the following. We first define the average quantity
Sv = ∑

vEv0/N with v = 0 · · · N = 41. Then, for a given value of Vmax, we vary (α′
0, q

′
0)

and find the corresponding vibrational energies resulting from the diagonalization of H̃ .
The optimized (α′

0, q
′
0) set is thus determined in such a way that the average quantity Sv is

minimized, meaning that ∂Sv/∂q ′
0 = ∂Sv/∂α′

0 = 0. This is based on the variational nature of
the basis truncation, which makes a priori all eigenvalues EvJ lower.

For our practical application to the 12C16O molecule, we have considered the following
fixed parameters found from the V (q) potential shape and from (43)

Vmax = 70, λ = 248, κ = 80, ᾱ0 = 0.0546, qeq = 11.7407. (68)
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Figure 1. Average quantity 
Sv = Sv − 37980.83 (see the text) plotted in the space (α′
0, q

′
0) of

variational parameters for 12C16O at Vmax = 70.

For the construction of the matrix elements of qn, we have set mmax = 2200 in (54) to
ensure a good convergence for all (n, v′, v) sets. For example, the convergence error between
mmax = 2200 and mmax = 2500 for SPTX̃

λ,κ(40)
70,70 is around 10−5 which remains below the

experimental accuracy.
Finally, the optimized values of (α′

0, q
′
0) are those corresponding to the minimum of the

surface plotted in figure 1 and built in the space of variational parameters. We thus find

α′
0 = −0.000225, q ′

0 = 0.74. (69)

The corresponding functions �λ,κ
v (q + q0) are plotted in figure 2 and are compared to the true

eigenfunctions of the transformed Hamiltonian (66). The slight discrepancy for low v-values
between �λ,κ

v (q + q0) and the true eigenkets is probably due to the shift q ′
0. In fact, since q ′

0
has been determined from a global optimization (∂Sv/∂q ′

0 = 0), the functions �λ,κ
v (q + q0)

are well adapted to describe, in average, all the vibrational states but are not necessarily suited
to locally describe one state in particular. Nevertheless, one can point out on this figure the
quite good consistency of the �λ,κ

v (q + q0) functions for the overall potential range.
Using the values (69), we are able to compute all energy levels up to v = 41 and

J = 133, corresponding to the experimental data. Some selected calculated values are listed in
table 3. We have compared our results to all the observed transitions (downloadable as indicated
in [44]) used to generate the potential U(r) from a Direct-Potential-Fit approach (DPF). This
approach is based on the numerical solutions of the radial equation; more details concerning
this approach can be found in [44].

We have obtained an rms error of 0.0012 cm−1 for the 13719 observed transitions of the
12C16O species. We can compare this value to that obtained from the DPF approach which is
exactly the same one. Other studies were carried out in [46, 47] for this molecule using the
harmonic oscillator and the displaced squeezed Fock states. Similar results were found using
basis-sets truncated at Vmax = 280 and 100, respectively. We can thus conclude that the PT
eigenfunctions (44) are well suited to perform variational calculations for diatomic molecules.
It remains to test their validity on polyatomic systems.
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Figure 2. Plot of the wavefunctions �λ,κ
v (q + q0) (solid line), equation (44), for v = 5, 10, 20, 30

and 40 and with the parameters of equations (68) and (69). The eigenkets of H̃ are also plotted
(dotted line) for Vmax = 70.

Table 3. Selected energy levels EvJ for 12C16O obtained with Vmax = 70 and with from the values
(68) and (69).

v J EvJ v J EvJ

0 0 1081.7714 10 0 21 331.1397
5 1139.4418 5 21 383.5615

10 1293.1756 10 21 523.2990
50 5944.5126 50 25 747.6727

100 19 880.4991 100 38 360.2886
5 0 11 533.9936 30 0 54 166.4956

5 11 589.0390 5 54 208.4355
10 11 735.7727 20 54 752.6237
50 16 173.5949 40 0 66 901.6768

100 29 448.1415 5 66 938.3002
10 67 035.9047

5. Conclusion

In this work, we have established general expressions for the matrix elements of the operators
xn for two hyperbolic Pöschl–Teller potentials. Taking advantage of the analytical properties
of hypergeometric series, all the desired expressions have been put in closed forms. Moreover,
an analytical expression for the nth derivative of the beta function has been derived. Its
values have been computed using symbolic and purely numerical calculations and successfully
compared for both methods. Although our compact results involve infinite series, we have
verified numerically the good convergence of our matrix elements in a fast way and without
loss of precision. These expressions could be now of great interest in molecular physics, and
in particular for high-resolution spectroscopic calculations which involve couplings between
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bending and stretching vibrations. Rather than describing as usual the stretching modes with
Morse oscillators and bending modes with harmonic oscillators, we are now able to treat
simultaneously both motions with the MPT and SPT potentials, respectively.

Appendix. Matrix elements 〈coshn(ᾱx̄)〉v′v , 〈sinhn(ᾱx̄)〉v′v and 〈tanhn(ᾱx̄)〉v′v

A.1. Matrix elements between the MPT wavefunctions

Let us consider the following integral

(p,p′)J j ′,j
v′v =

∫ +∞

−∞
�

j ′
v′ (x̄) [tanh(ᾱx̄)]p [cosh(ᾱx̄)]p

′
�j

v (x̄) dx̄,

= 1

ᾱ

∫ +1

−1
�

j ′
v′ (u)up(1 − u2)−p′/2−1�j

v (u) du. (A.1)

Such an integral can be cast in the form

(p,p′)J j ′,j
v′v = 22a′+1N

j
v N

j ′
v′

ᾱ

(βjv)v(βj ′v′)v′

v!v′!

×
∫ 1

0
ua′

(1 − u)a
′
(1 − 2u)p2F1

(−v′, 2j ′ − v′ + 1
j ′ − v′ + 1

; u

)

× 2F1

(−v, 2j − v + 1
j − v + 1

; u

)
du, (A.2)

with βjv = 2j − 2v + 1 and a′ = j ′+j

2 − v′+v
2 − p′

2 − 1. Using equation (10), this expression
can be written as

(p,p′)J j ′,j
v′v = 22a′+1N

j
v N

j ′
v′

ᾱ

(βjv)v(βj ′v′)v′�(c − b)

v!v′!

×
v∑

k=0

v′∑
k′=0

�(b)

�(c)

(−v)k(−v′)k′(2j − v + 1)k(2j ′ − v′ + 1)k′

(j − v + 1)k(j ′ − v′ + 1)k′k!k′!

× 2F1

(−p, b

c
; 2

)
, (A.3)

with b = a′ + k′ + k + 1 and c = 2a′ + k′ + k + 2. For p = 0, the integral (29) can be recovered
when simplifying the 2F1(2) series and we have in this case 
v even. The condition c−b > 0
implies that p′ < 2j − (v′ + v).

Various matrix elements can be deduced from this closed form which is written in a more
compact form than in [9]. For example, we have (n ∈ Z)

〈v′|tanhn(ᾱx̄)|v〉MPT = (n,0)J j,j

v′v ,

〈v′|coshn(ᾱx̄)|v〉MPT = (0,n)J j,j

v′v ≡ (n)Ij,j

v′v (see equation (29)), (A.4)

〈v′|sinhn(ᾱx̄)|v〉MPT = (n,n)J j,j

v′v .

A.2. Matrix elements between the SPT wavefunctions

Let

(p,p′)Kλ′κ ′,λκ
v′v =

∫ +∞

0
�

λ′,κ ′
v′ (x̄) [tanh(ᾱx̄)]p [cosh(ᾱx̄)]p

′
�λ,κ

v (x̄) dx̄, (A.5)
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the integral to be evaluated. Performing a suitable change of variable, we write

(p,p′)Kλ′κ ′,λκ
v′v = Nλ,κ

v N
λ′,κ ′
v′

2ᾱ

∫ 1

0
uν(1 − u)μ−1

× 2F1

(−v′, λ′ − v′ + 1
2

κ ′ + 1
2

; u

)
2F1

(−v, λ − v + 1
2

κ + 1
2

; u

)
du (A.6)

with ν = κ ′+κ+p−1
2 and μ = λ′−κ ′

2 + λ−κ
2 − (v′ + v) − p′

2 .
Using equation (34) and after some algebraic manipulations, we simply get

(p,p′)Kλ′κ ′,λκ
v′v = Nλ,κ

v N
λ′,κ ′
v′

2ᾱ

v′∑
m′=0

(−v′)m′
(
λ′ − v′ + 1

2

)
m′(

κ ′ + 1
2

)
m′m

′!

× B(μ, ν + m′ + 1)3F2

(−v, ν + m′ + 1, λ − v + 1
2

μ + ν + m′ + 1, κ + 1
2

; 2

)
, (A.7)

where p′ must satisfy the condition μ > 0.
Similarly to the MPT, we have (n ∈ Z)

〈v′|tanhn(ᾱx̄)|v〉SPT = (n,0)Kλκ,λκ
v′v ,

〈v′|coshn(ᾱx̄)|v〉SPT = (0,n)Kλκ,λκ
v′v , (A.8)

〈v′|sinhn(ᾱx̄)|v〉SPT = (n,n)Kλκ,λκ
v′v .
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[28] Pöschl G and Teller E Z 1933 Z. Phys. 5 143
[29] Rosen N and Morse P M 1932 Phys. Rev. 42 210
[30] Flug̈ge S 1971 Practical Quantum Mechanics (Berlin: Springer)

19

http://dx.doi.org/10.1016/0022-2852(88)90164-6
http://dx.doi.org/10.1002/qua.560520117
http://dx.doi.org/10.1016/S0301-0104(78)85253-7
http://dx.doi.org/10.1103/PhysRevA.38.4205
http://dx.doi.org/10.1063/1.456406
http://dx.doi.org/10.1016/0010-4655(92)90199-9
http://dx.doi.org/10.1088/0953-4075/21/16/011
http://dx.doi.org/10.1002/qua.10038
http://dx.doi.org/10.1002/(SICI)1097-461X(1996)57:1elax
<43::AID-QUA5elax >3.0.CO;2-Z
http://dx.doi.org/10.1088/0305-4470/37/19/010
http://dx.doi.org/10.1002/qua.8000
http://dx.doi.org/10.1063/1.528889
http://dx.doi.org/10.1088/0305-4470/20/13/017
http://dx.doi.org/10.1088/0305-4470/22/17/037
http://dx.doi.org/10.1063/1.526559
http://dx.doi.org/10.1088/0305-4470/22/23/012
http://dx.doi.org/10.1063/1.1747262
http://dx.doi.org/10.1103/RevModPhys.29.664
http://dx.doi.org/10.1103/RevModPhys.34.239
http://dx.doi.org/10.1088/0022-3700/3/11/004
http://dx.doi.org/10.1080/00268978600102631
http://dx.doi.org/10.1080/10652460600856492
http://dx.doi.org/10.1080/00268976800101381
http://dx.doi.org/10.1103/PhysRev.42.210


J. Phys. A: Math. Theor. 42 (2009) 165209 M Rey and F Michelot

[31] Lemus R and Bernal R 2002 Chem. Phys. 283 401
[32] Aldaya V and Guerrero J 2005 J. Phys. A: Math. Gen. 38 6939
[33] Guerrero J and Aldaya V 2006 J. Phys. A: Math. Gen. 39 L267
[34] Abramowitz M and Stegun I A 1972 Handbook of Mathematical Functions (New York: Dover)
[35] Gradshteyn I S and Ryzhik I M 2007 Table of Integrals, Series and Products (New York: Academic)
[36] Driver K A and Johnston S J 2006 Elec. Trans. Num. Anal. 25 115
[37] Milgram M 2004 On Some Sums of Digamma and Polygamma functions, arXiv:math.CA/0406338v1
[38] Prudnikov A P, Brychkov Yu A and Marichev O I 1990 More Special Functions (Integrals and Series vol 3)

(New York: Gordon & Breach)
[39] Milgram M 2005 Ann. Nucl. Energy 32 1167
[40] Lanczos C 1964 J. SIAM Numer. Anal. Ser. B 1 86
[41] Infeld L and Hull T E 1951 Rev. Mod. Phys. 23 21
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